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Abstract

We propose a method to generate high-order unstructured curved meshes using the classical Winslow equations. We start with
an initial straight-sided mesh in a reference domain, and fix the position of the nodes on the boundary on the true curved geometry.
In the interior of the domain, we solve the Winslow equations using a new continuous Galerkin finite element discretization. This
formulation appears to produce high quality curved elements, which are highly resistant to inversion. In addition, the corresponding
nonlinear equations can be solved efficiently using Picard iterations, even for highly stretched boundary layer meshes. Compared
to several previously proposed techniques, such as optimization and approaches based on elasticity analogies, this can significantly
reduce the computational cost while producing curved elements of similar quality.
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1. Problem formulation and discretization

Let D ⊂ Rn and C ⊂ Rn denote the physical and the computational domain, respectively. Define the mapping
x : C → D, where x = x(ξ) = (x1(ξ), . . . , xn(ξ)). The Winslow equations in physical coordinates are given by:

gi j∂i∂ jxk = 0 for k = 1, . . . , n, (1)

where, gi j are defined through the relation gi jg jk = δik and gi j = ∂ixk∂ jxk.
Assuming sufficient smoothness of the solution fields, we can then rewrite Eqs. (??) as a conservative second-order

term plus a first order term involving α, to obtain the final form of our governing equations:

∂i(gi j) + α j = 0, for j = 1, . . . , n,

∂i(gi j∂ jxk) + α j∂ jxk = 0, for k = 1, . . . , n.

Our discretization using standard continuous Galerkin method lead to the final system of equations with nonlinear
dependencies:

Mαh
j = b j(xh), j = 1, . . . , n, (2)

K(αh, xh)xh
j = c j(αh, xh), j = 1, . . . , n. (3)

We solve these nonlinear equations using Picard iterations. Namely, for a given solution iterate x(`), we compute an
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1. Assemble (??) using xh = x(`) and solve for αh = α(`).
2. Assemble (??) using xh = x(`) and αh = α(`), and solve for x(`+1).

2. Results

Here we present the results our method for two examples: an anisotropic mesh with boundary layers and a Falcon
aircraft configuration (Fig. ??).

We also study the behavior of our solver as we locally refine the mesh close to the boundary layer with growth
factor equal to 2. We count the number of iterations the method takes to converge, and observe that it remains mainly
constant as we refine the mesh – in contrast with non-linear elasticity approach [? ] where it scales by the inverse of
the thickness of the boundary layer.

0 refinements

(a) Final curved mesh, convergence in 10 iterations

3 refinements

(b) Final curved mesh, convergence in 11 iterations

(c) Final curved mesh, Falcon aircraft (d) Final curved mesh, Falcon aircraft, elements with
scaled Jacobian smaller than 0.5

Fig. 1. Refinement study: In (a) and (b), show local refinement pattern, growth factor is 2. In (c) and (d), we see the Falcon aircraft configuration:
the minimum scaled Jacobian for this example was 0.20.
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